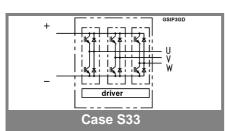

SKiiP 603GD122-3DUW

SKIIP 3

6-pack-integrated intelligent Power System

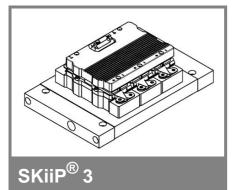

Power section

SKiiP 603GD122-3DUW

Data

Power section features

- SKiiP technology inside
- SPT (Soft Punch Through) IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal



Absolute	Maximum Ratings	T _s = 25°C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V _{CES}		1200	V			
V _{CC} ¹⁾	Operating DC link voltage	900	V			
V _{GES}		± 20	V			
I _C	T _s = 25 (70) °C	600 (450)	А			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	480 (370)	А			
I _{FSM}	T _j = 150 °C, t _p = 10 ms; sin	3500	А			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	61	kA²s			
T _j , (T _{stg})		- 40 + 150 (125)	°C			
V _{isol}	rms, AC, 1 min, main terminals to heat sink	3000	V			
I _{AC-terminal}	per AC terminal, rms, T _s = 70 °C,	400	А			
	T _{terminal} <115 °C					

Characteristics				T _s = 25	°C unless	otherwise	specified	
Symbol	Conditions			min.	typ.	max.	Units	
IGBT								
V _{CEsat}	I _C = 300 A measured at t	, T _j = 25 (* erminal	125) °C;			2,3 (2,5)	2,6	V
V _{CEO}	T _i = 25 (12	25) °C; at t	erminal			1,1 (1)	1,3 (1,2)	V
r _{CE}	T _i = 25 (125) °C; at terminal				3,8 (5)	4,5 (5,6)	mΩ	
I _{CES}	V _{GE} = 0 V, T _i = 25 (12		ES'			1,2 (36)		mA
E _{on} + E _{off}	I _C = 300 A	, V _{CC} = 60	00 V			90		mJ
	T _j = 125 °C	C, V _{CC} = 9	00 V			159		mJ
R _{CC+EE} '	terminal ch	nip, T _j = 25	5 °C			0,5		mΩ
L _{CE}	top, botton	n				12		nH
C _{CHC}	per phase,	AC-side				1		nF
Inverse o								
V _F = V _{EC}	I _F = 300 A, measured at t	, T _j = 25 (1 erminal	125) °C			1,8 (1,5)	2,3	V
V _{TO}	T _i = 25 (12	25) °C				1 (0,7)	1,2 (0,9)	V
r _T	T _i = 25 (12	25) °C				2,6 (2,8)	3,5 (3,7)	mΩ
E _{rr}	I _C = 300 A	, V _{CC} = 60	00 V			24		mJ
	T _j = 125 °C	C, V _{CC} = 9	00 V			31		mJ
Mechani	cal data							
M _{dc}	DC termina	,			6		8	Nm
M_{ac}	AC termina	,			13	<u> </u>	15	Nm
W	SKiiP [®] 3 System w/o heat sink				2,4		kg	
W	heat sink					5,2		kg
	characte referenc					c.); "s" ref	erence to	heat
R _{th(i-s)l}	per IGBT						0,051	K/W
R _{th(j-s)D}	per diode						0,1	K/W
Z _{th}	R _i (mK/W) (max. values)				1	1		
	1	2	3	4	1	2	3	4
Z _{th(j-r)I}	4,2	20,4	23,4	0	69	0,35	0,02	1
Z _{th(j-r)D}	7,8	12	53,1	53,1	50	5	0,25	0,04
Z _{th(r-a)}		4,7					2,8	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

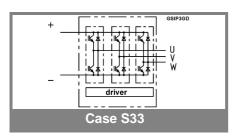
SKiiP 603GD122-3DUW

6-pack-integrated intelligent Power System

6-pack integrated gate driver SKiiP 603GD122-3DUW

Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	e Maximum Ratings	$T_a = 25^{\circ}C$ unless otherwise specified		
Symbol	Conditions	Values	Units	
V _{S2}	unstabilized 24 V power supply	30	V	
V _i	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/µs	
V _{isollO}	input / output (AC, rms, 2s)	3000	V	
VisoIPD	partial discharge extinction voltage, rms, $Q_{PD} \leq 10 \text{ pC}$;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	15	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	15	kHz	
$T_{op}\left(T_{stg} ight)$	operating / storage temperature	- 40 + 85	°C	

Characte	(T _a			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V _{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	365+30*f/kHz+0,00111*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V _{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		500		A
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	$(I_{analog} OUT = 10 V)$		625		A
T _{tp}	over temperature protection	110		120	°C
UDCTRIP	U _{DC} -protection (U _{analog OUT} = 9 V);		900		V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

